
MXSEditor Global Utility Plugin V1.0 – Document Version V1.1
Author: Josef Wienerroither
Modified: September 30th, 2018
Created: August 2011

VERSION HISTORY:
Version V1.0, DC20180930

• 3ds Max 2018 and 3ds Max 2019 builds added (Plugin version still 1.0)

Version V1.0, DC20160720
• Max 2008 to Max2017, x86 and x64 compatibility
• Callback functionality implementation
• Lots of other fixes and updates, Unicode compatibility
• Documentation added

Version V0.50 - Beta 1, DC20120214,
• First public release

AUTHOR:
Josef Wienerroither aka "spacefrog"
Web: www.frogsinspace.at
Email: spacefrog@chello.at

DOWNLOAD & INSTALL:
The most recent version can be downloaded here: 3sd Max MXSEditor Plugin - Current Release
Copy the appropiate file according to your 3ds Max version into your plugins folder and restart 3ds Max.
The plugin should now be operational. To check this, type "showinterface MXSEditor" in the listener
and hit enter. If a list of public properties and functions appears, the plugin got loaded.

FEATURES:
Maxscript Editor as Extended Viewport
Extensive control over the Maxscript Editor via maxscript
Access to the Scintilla/SciTE internal command set (see Scintilla Documentation)
Callback mechanism to get notified about changes and events occuring in the maxscript editor

USAGE:
Features for more general maxscript usage are documented below. For detailed documentation about
the Scintilla/SciTE related functionality, please refer to the official Scintilla Documentation.

IMPORTANT:
The version of the Scintilla/SciTE codebase that is used for the maxscript editor is pretty outdated.
Addionally it is heavily modified for the integration with 3ds Max. My investigation lead to the conclusion
that it's based on codebase version 1.71, which was released back in August 2006. You may visit
Scintilla's history page to read more about the progress made since then.

The following is important to remember when accessing Scintilla/SciTE related APIs using this plugin:
Many of today's Scintilla/SciTE features and documentation DO NOT apply to the maxscript
editor. Only ever expect the featureset and API of V1.71. As todays online documentation targets
the newer versions, it's recommended to use the docs bundled with the V1.71 distribution.

1

http://www.frogsinspace.at/
http://prdownloads.sourceforge.net/scintilla/scite171.zip?download
http://www.scintilla.org/ScintillaHistory.html
http://prdownloads.sourceforge.net/scintilla/scite171.zip?download
http://www.scintilla.org/ScintillaDoc.html
http://www.scintilla.org/ScintillaDoc.html
http://www.frogsinspace.at/?download=MXSEditor%20Global%20Utility%20Plugin
mailto://spacefrog@chello.at

MXSEditor Interface

Main maxscript interface to control the editor,
"showinterface mxseditor" reveals all available methods and properties

Property Description

x, y, width, height Maxscript editor window position and size (if not in extended viewport)

enableCallbacks quickly disable or enable installed callbacks without removing them

isVisible Toggle maxscript editor visibilty

verbose Toggle Scintilla commands verbose listener output

isExtendedVP Maxscript editor is currently in extended viewport (readonly)

mainWHND Maxscript editor‘s window handle

editHWND Maxscript editor edit component‘s window handle

documentCount Number of currently opened documents (tabs) in the maxscript editor

currentDocument Full path and filename of the currently active tab‘s document

2

 Interface: MXSEditor
 Properties:
 .x : integer : Read|Write
 .y : integer : Read|Write
 .width : integer : Read|Write
 .height : integer : Read|Write
 .enableCallbacks : boolean : Read|Write
 .isVisible : boolean : Read|Write
 .verbose : boolean : Read|Write
 .isExtendedVP : boolean : Read
 .mainHWND : HWND : Read
 .editHWND : HWND : Read
 .documentCount : integer : Read
 .currentDocument : string : Read
 Methods:
 <void>redraw()
 <void>show()
 <boolean>endExtendedVP()
 <void>reloadOptions()
 <boolean>editFile <string>filename quiet:<boolean>
 quiet default value: false
 <string>documentAtNumber <integer>index
 <void>menuCommand <string>menucode
 <boolean>setWindowPosition <int>x <int>y <int>width <int>height
 <string>getConfigProperty <string>name
 <integer>getConfigIntProperty <string>name
 <void>setConfigProperty <string>name <string>value
 <integer>listFunctions()
 <integer>listConstants()
 <integer>listProperties()
 <integer>listMenucodes()

Methods:

Redraw()

Redraw the text content of the current visible tab

Show()

Opens the Maxscript editor window (see .isVisible property to hide)

<boolean> EndExtendedVP()

Detaches the maxscript editor from an extended viewport and restores the original editor window.
Returns true if the editor was in an extended viewport, false otherwise.

ReloadOptions()

Reload Maxscript editor configuration files (eg. after a setting got changed externally)

<boolean> EditFile <filename> quiet:<boolean>

Open file in editor, if quiet:true is passed as optional argument, the usual modal dialog prompt is
suppressed in case the file does‘nt exists

<string> DocumentAtNumber <index>

Returns the full path of the file loaded in editor‘s tab # <index> (1 based)

<boolean> SetWindowPosition x y w h menuCommand

Set maxscript editor‘s position and size using only one call

MenuCommand <string>menuCode

Sends the passed SciTE menucode the maxscript editor to perform the corresponding SciTE action.
For a quick list of available command codes, see ListMenucodes() below.
Note that the maxscript editor might not support all of those listed menucodes. For documentation of
the SciTE menu codes, see the SciTE documentation here.

Examples:
mxseditor.menucommand "IDM_FULLSCREEN" toggle editors fullscreen mode

mxseditor.menucommand "IDM_TABSIZE" open the tab and indent size settings dialog

<string> GetConfigProperty <name>

Returns the string based property <name> from the current editor configuration. Those properties
get read from the various editor configuration files at 3ds Max startup (eg. MXS_Editor.properties).
If the property does‘not exist, and empty string ("") is returned.

Example:
GetConfigProperty "font.base“ returns the configured base font as string value

3

http://www.scintilla.org/CommandValues.html

<int> GetConfigIntProperty <name>

Returns the property <name> from the current editor configuration as integer. If the property is not
an integer a value of 0 is returned. If the property does‘not exist -1 is returned.

Example:
GetConfigIntProperty "caret.width" returns the cursor's width in pixels

SetConfigProperty <string> <string>

Sets the property <name> from the current editor configuration to the passed string value. Please
note that this is of limited use, as the new property value does not become active before 3ds Max is
restarted. As the value does'nt get saved to the configuration file, it will be lost after a restart.

ListFunctions()

Lists all SciTE internal commands which can be used to control the maxscript editor component. See
the documentation or the MXSEFuncs Interface below. For a description of the individual SciTE
keycommands, see the official online documentation here and here.
Note that not all commands might be implemented or supported in the maxscript editor.

ListConstants()

Lists all SciTE internal constants and there corresponding integer value to be passed to the
MXSFuncs and MXSProps interfaces. See the documentation for MXSEFuncs and MXSProps below.

For a description of these constants see official Scintilla documentation here.
Note that not all constants might apply or be supported in the maxscript editor.

ListProperties()

Lists all SciTE internal properties and their signature available to query and change the current
configuration and settings of the maxscript editor using the MXSProps interface. See the

documentation for MXSProps below. For a description of those properties, see the official online
documentation here. Note that not all properties might apply or be supported in the maxscript editor.

ListMenucodes()

Lists all available SciTE menu commands available which can be sent to the maxscript editor. See
the documentation for the MenuCommand() method above. Note that the maxscript editor might not
support all of those listed menu commands. For documentation of the SciTE menu commands, see
the SciTE documentation here.

4

http://www.scintilla.org/CommandValues.html
http://www.scintilla.org/PaneAPI.html
http://www.scintilla.org/ScintillaDoc.html
http://www.scintilla.org/PaneAPI.html
http://www.scintilla.org/CommandValues.html

MXSEFuncs struct

Maxscript struct to access Scintilla's editor functions. Entering "MXSEFuncs" in the listener reveals two
public methods

Methods:

List()

Lists available SciTE internal editor commands and their parameter signature. For a description
of the individual SciTE keycommands, see the official online documentation here and here.

Note that not all commands might be implemented or supported in the maxscript editor.

Call()

Calls a SciTE internal editor keycommand. The first argument is the SciTE command name passed
as string value. Addional arguments depend on the specific SciTE's function signature. See
MXSFuncs.List() below for the various command's arguments and their data types. Command
parameters and return values are past as their respective maxscript equivalents.

Example:
To set the editor selected text's background color we use MXSFuncs.List()or the SciTE online

documentation to find the command void SetSelBack(bool, color).

Thus we use MXSFuncs.call() to actually execute the command in the listener:

mxsefuncs.call "SetSelBack" true new (color 100 200 30 128)

(see http://www.scintilla.org/PaneAPI.html for a description of the boolean parameter...)

Maxscript variables can be passed by reference with commands that expect a variable to be filled
with additional return data (eg. the selected text)

Example:
To receive the currently selected text we use the following mxsefuncs call

mxsefuncs.call "GetSelText" &myText

The Maxscript variable myText now will contain the currently selected text

5

#Struct:MXSEFuncs(
 call:<fn>; Public,
 list:<fn>; Public)

http://www.scintilla.org/PaneAPI.html
http://www.scintilla.org/PaneAPI.html
http://www.scintilla.org/PaneAPI.html
http://www.scintilla.org/PaneAPI.html
http://www.scintilla.org/CommandValues.html

MXSEProps struct

Maxscript struct to access Scintilla's editor properties. Entering "mxseprops" in the listener reveals thw
following public methods

Methods:

List()

Similar to mxsefuncs.list(), this one lists available SciTE config properties. They essentially
represent the current internal settings and state of the editor component. t's important to
recognize that those are NOT properties defined in the external scintilla "options" files .

 See the official online documentation here.

Note that not all properties might be implemented or supported in the maxscript editor.

Get <propertynamestring> [<optional argument>]

Returns the current value of the corresponding property. See mxseprops.List() for available
properties, their return datatypes and the optional argument

Set <propertynamestring> <value>

Sets the current property value. See mxseprops.List() for available propertynames and their
value type (the leftmost column of the output).

Examples:
To change the current zoom level of the editor text (default value is 0)

mxseprops.set "zoom" 4

Or to select the current editor tab's text from character position 10 to position 150

mxseprops.set "selectionstart" 10
mxseprops.set "selectionend" 150

6

#Struct:MXSEProps(
 set:<fn>; Public,
 list:<fn>; Public,
 get:<fn>; Public)

http://www.scintilla.org/PaneAPI.html

MXSECallback struct

Maxscript struct to access the callback framework. Callbacks hook into maxscript editor notifications.
This includes events like text and editor input focus changes, autocomplete selections, mouse input
events etc...

Methods:

Enable(), Disable()

Enable/disable the callback notification functionality globally. Does not modify the list of registered
callbacks, but provides a way to quickly enable and disable the whole callback mechanism.

Set <event id> <maxscript function>

Registers the corresponding maxscript function to be called when respective notification is triggered.
For a list of valid event ids, please see the List() method's documentation below.

Get <event id>

Get the maxscript function that is registered to be called by the the corresponding notification event.

List()

List all available and supported SciTE notification event ids.

#StyleNeeded
#CharAdded
#SavePointReached
#SavePointLeft
#ModifyAttemptReadOnly
#DoubleClick
#UpdateUI
#Modified
#MacroRecord
#MarginClick
#NeedShown
#Painted
#UserListSelection

#URIDropped
#DwellStart
#DwellEnd
#Zoom
#HotSpotClick
#HotSpotDoubleClick
#CallTipClick
#AutoCompleteSelection
#KillFocus
#SetFocus
#Change

7

#Struct:MXSECallback(
 set:<fn>; Public,
 show:<fn>; Public,
 Enable:<fn>; Public,
 remove:<fn>; Public,
 list:<fn>; Public,
 removeAll:<fn>; Public,
 getCallbackText:<fn>; Public,
 get:<fn>; Public,
 getCallbackData:<fn>; Public,
 Disable:<fn>; Public)

Remove <event id>

Removes the given event id from the list of registered notification events. The corresponding
maxscript function will no longer be called when the notification event occurs.

RemoveAll()

Removes all maxscript functions from the notification callbacks. Though the notification callback
mechanism is essentially disabled, notification events are still processed internally. Should be
followed by Disable() (see above), to completely disable the notification callback mechanim.

Show()

List current installed SciTE notification callback Ids and their respective maxscript function.

GetCallbackData()

To be called inside a registered notification callback function. Returns an array holding 19 data
elements which form a Scintilla SCNotification struct. For further documentation about this struct's
content and which fields hold valid data for a given callback, read the official documentation here.
This includes exact documentation about which fields get used with which notification.

The elements in the array, their corresponding SCNotification struct counterparts and the event
ids which use those fields to pass data. This might be not complete, so it's always good to
experiment and check for other eventId/valid field combos. It might be feasable to analyze the
relevant SciTE source code (SciteBase.cxx etc.) to learn about addional callback data passing.

1: idFrom: Integer, ControlID which sent the notification

2: code: Integer, the raw SCN_* notification code (see SCNotification struct documentation)

3: position: Integer, character position value
used with: #StyleNeeded, #DoubleClick, #Modified, #DwellStart, #DwellEnd,

#CallTipClick, #HotSpotClick, #HotSpotDoubleClic,

4: ch: Integer, character entered, used with: #CharAdded

 5: modifiers: Integer, modifiers flags, used with: #HotSpotClick, #HotSpotDoubleClick

 6: modificationType: Integer, type of modification, used with: #Modified

 7: text: Integer64, memory ADDRESS of textbuffer or undefined
 for performance reasons, this field only holds the ADDRESS if there is actual text available with
the notification or undefined otherwise. To retrieve the text, see GetCallbackText() below.
Used with: #Modified, #UserListSelection, #AutoCompleteSelection

8: length: Integer, length value used by certain notifications, used with: #Modified

9: linesAdded: Integer, number of lines added , used with: #Modified

10: message: Integer, message code, used with: #MacroRecord

11: wParam: Integer, wParam for message, used with: #MacroRecord

12: lParam: Integer, lParam for message, used with: #MacroRecord

8

http://www.scintilla.org/ScintillaDoc.html#Notifications
http://www.scintilla.org/ScintillaDoc.html#Notifications
http://www.scintilla.org/ScintillaDoc.html#Notifications

13: line: Integer, used with: #Modified, #DoubleClick

14: foldLevelNow: Integer, current foldlevel applied to the line, used with: #Modified

15: foldLevelPrev: Integer, previous foldlevel for the line, used with: #Modified

16: margin: Integer, id of the margin that was clicked on, used with: #MarginClick

17: listType: Integer,listtype picked , used w.: #UserListSelection, #AutoCompleteSelection

18: x: Integer, horizontal pixel position , used with: #DwellStart, #DwellEnd

19: y: Integer, vertical pixel position, used with: #DwellStart, #DwellEnd

GetCallbackText()

To be called inside a registered notification callback function. Retrieves and returns text passed by

the current notification, if the notification supports that. Returns undefined in the other case.

9

